In February 2007, the U.S. EPA entered the next generation of watershed-based pollution control by issuing a Total Maximum Daily Load (TMDL) based not on a specific pollutant but on impervious cover. The goals for Connecticut’s 2.4-square-mile Eagleville Brook Watershed integrate aspects of urban development. Since then, similar TMDLs have been or are being developed across the Northeast, including in Maine, Massachusetts, and North Carolina. In Connecticut, 238 square miles of impervious cover (about 5% of the state) was added between 1985 and 2006. This work is expected to become a national model by which communities can use a framework of impervious cover management to meeting water quality goals.

Typically, TMDLs are managed by local jurisdictions through a waste load allocation established by the state. In this case, the Connecticut Department of Environmental Protection (DEP) determined that a biological impairment—such as low fish densities in some areas and large amounts of aquatic habitat completely unoccupied in others—existed, but couldn’t be attributed to one specific pollutant. Instead, the impairment was attributed to an array of pollutants transported by stormwater and linked to urbanization, and—more directly—impervious cover.

The Eagleville Brook TMDL was created to improve the quality of streams impaired by urbanization. Eagleville Brook is a small watershed that drains much of the University of Connecticut campus. The brook is on the 2008 list of state waterbodies not meeting quality standards due to very low aquatic life use support scores, the causes of which are cited as “unknown.” The watershed flows to an impoundment of the Willimantic River, a tributary of the Thames River basin, which encompasses much of the eastern one-third of the state.

In 2005 – 2006, the DEP conducted statewide research comparing stream health, as indicated by metrics for benthic macroinvertebrate populations, to watershed impervious cover estimates provided by the university’s Center for Land Use Education and Research. As urban watersheds become even more urbanized, runoff causes elevated concentrations of pollutants, altered channel morphology, and reduced biotic integrity. Of the 125 stream segments that were studied, no segment with more than 12% impervious cover in its immediate upstream catchment area met the state’s aquatic life criteria for a healthy stream. This became the foundational research supporting the impervious cover TMDL framework and setting the impervious cover goal at 11%.

The university and the Town of Mansfield responded by partnering to evaluate the feasibility of the maximum pollutant level concept and document a general methodology that would allow other communities to implement a similar program. The project team included the university’s Center for Land Use Education and Research, the Center for Watershed Protection, and the Horsley-Witten Group engineering firm.

Field assessments yield opportunity

The project team began by analyzing mapping data for the watershed: state hydrography and topography, the university’s infrastructure and building footprints, and the town’s stormwater infrastructure. They determined that 18%, or 218 acres, is impervious cover—higher than the 11% target. Most is concentrated in the highly urbanized section of the university’s campus. On the other hand, the town’s portion of the watershed is primarily composed of rural residential development.

In July 2009, the team conducted field work to identify opportunities to disconnect impervious cover using

WHAT IS IMPERVIOUS COVER?

According to the U.S. EPA, it is the amount of land cover in roads, buildings and parking lots, and turf grass cover in a watershed, which can seriously impact biotic integrity (fish community health) in associated streams.

http://go.hw.net/imperviouscover

STORMWATER CONTROL | By Chester Arnold, Kelly Collins, Deb Caraco, Anne Kitchell, and Lori Lilly
the Retrofit Reconnaissance Inventory (RRI) developed by the Center for Watershed Protection.

Members evaluated the retrofit potential of 51 sites by analyzing drainage patterns, drainage areas, impervious cover, available space, and other constraints such as conflicts with utilities and land uses, site access, and potential impacts to natural areas. They also sought to verify subwatershed drainage boundaries and identify impervious cover that was already disconnected. They found:

- Discrepancies in the original watershed boundary as contained in the state hydrography data layer; the watershed is actually 26 acres smaller.
- 51 acres of impervious cover are already disconnected via sheet flow to a large forested area, undetected diversion to another watershed, or being treated by a best management practice.
- Several impervious surfaces in the center of campus drain to highly compacted pervious areas with reduced ability to infiltrate stormwater. So although they were considered pervious when determining the original estimates, the team also considered impervious portions draining to compact pervious areas without a best management practice to be directly connected to the watershed.

Unless there were obvious constraints and/or evidence that a retrofit would offer few or no benefits, a stormwater retrofit concept was developed. Of the 110 potential retrofits the team identified, most are on the university campus. The team then identified 10 priority projects based on pollutant removal capability, runoff reduction, integration with other improvements, and cost.

Although impervious cover will be used to measure progress in this TM-DL, the ultimate goal is to restore the watershed's biological communities by improving the brook's water quality.

(continued)
We've built the perfect partner to your favorite magazine.

pwmag.com

- Complete, searchable archive of Public Works magazine
- Industry Sourcebook, the industry's go-to resource for products and services
 - Multiple coverage areas: marketing, asset management, preservation/restoration, water solutions, equipment, technology and more
- Calendar of industry events, announcements, information and activities

Industry news, market research, job postings and more. All online. All the time.

After you've read everything in Public Works magazine, there's even more industry information waiting for you at pwmag.com. Log on any time for up-to-the-minute news, market research, current statistics, online discussions, video demonstrations and instant access to job postings and job services. It's a complete multimedia resource that no one else can match.

pwmag.com + Public Works magazine
Working together to keep you informed.
The 110 retrofit opportunities at the University of Connecticut, some of which are shown in this draft, represent a variety of stormwater management practices: rain gardens, bioretention, downspout disconnection, green roofs, swale enhancement, soil amendments, dry swale, porous pavement, cisterns, sand filters, constructed wetlands, floodplain reconnection, impervious cover removal, tree plantings, pervious area restoration, and planters.
Thus, several questions still need to be addressed:

- How are discrepancies in impervious cover estimates and watershed boundaries addressed in regard to the TMDL regulatory framework?
- Is the “effective” watershed impervious cover comparable to actual watershed impervious cover, and what should be the process for accounting for each in development and implementation of maximum pollutant levels?
- How should stormwater managers account for “partial” or “ineffective” treatment, such as undersized or under-managed stormwater management practices, of impervious cover? Do these practices get partial credit?
- What happens if there aren’t enough on-the-ground opportunities to meet target pollutant levels due to the lack of publicly-owned properties and uncooperative land owners?

Moving forward, the DEP’s Bureau of Water Management will collect surface water flow and benthic macroinvertebrate data to measure the TMDL’s impact on the watershed’s aquatic life. The bureau and the Connecticut Inland Fisheries Division also will gather and analyze data regarding fish populations. The data will be incorporated into a watershed-based action plan that’s in the draft phase.

Overall, accounting for impervious cover when developing water quality objectives makes sense because it typically is easier to generate a community response than with many other pollutants, such as bacteria or heavy metals. An impervious cover TMDL is easy to understand and measure, and it can result in a quick path to implementation.

Although not yet quantified, the progress so far in Eagleville Brook supports this view. Based on this experience, combining an integrative indicator like impervious cover with an accounting system like a TMDL provides a promising approach for helping communities design land use plans that protect water resources. PW

— Arnold (chester.arnold@uconn.edu) is associate director for the extension department of the Center for Land Use Education and Research at the University of Connecticut; Collins (kac@cwp.org) is water resources engineer for the Center for Watershed Protection; Caraco (dsc@cwp.org) is senior watershed engineer for the Center for Watershed Protection; Kitchell (akitchell@horsleywitten.com) is senior environmental planner for the Horsley Witten Group; and Lilly (lal@cwp.org) is watershed ecologist and planner for the Center for Watershed Protection.